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Abstract

Pleasure is mediated by well-developed mesocorticolimbic circuitry, and serves adaptive functions. In
affective disorders anhedonia (lack of pleasure) or dysphoria (negative affect) can result from
breakdowns of that hedonic system. Human neuroimaging studies indicate that surprisingly similar
circuitry is activated by quite diverse pleasures, suggesting a common neural currency shared by all.
Wanting for rewards is generated by a large and distributed brain system. Liking, or pleasure itself, is
generated by a smaller set of hedonic hotspots within limbic circuitry. Those hotspots also can be
embedded in broader anatomical patterns of valence organization, such as in a keyboard pattern of
nucleus accumbens generators for desire versus dread. In contrast, some of the best known textbook
candidates for pleasure generators, including classic pleasure electrodes and the mesolimbic dopamine
system, may not generate pleasure after all. These emerging insights into brain pleasure mechanisms
may eventually facilitate better treatments for affective disorders.

Introduction

The English word hedonic comes originally from the ancient Greek for pleasure (ἡ δονή; in Latin
script: hédoné), in turn derived from the word for “sweet” (ἡ δύς, or hēdús). Today hedonic refers to
sensory pleasures as well as many higher types of pleasure (e.g., cognitive, social, aesthetic, and
moral).

A goal of affective neuroscience is to understand how brain mechanisms generate pleasures, and also
displeasures, and eventually find more effective treatments for affective disorders (Anderson and
Adolphs, 2014; Damasio and Carvalho, 2013; Haber and Knutson, 2010; Heller et al., 2013;
Kringelbach and Berridge, 2010; Panksepp, 2011). Capacity for normal pleasure is essential to healthy
psychological function or well-being. Conversely, affective disorders can induce either the pathological
absence of pleasure reactions (as in clinical anhedonia), or the presence of excessive displeasure
(dysphoric emotions such as pain, disgust, depression, anxiety, or fear).
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But is a neuroscience of pleasure feasible? Doubts that pleasure might be scientifically understood have
been expressed for over a century. Early doubts stemmed from behaviorist convictions that only
objective behavioral-neural reactions were eligible for scientific study, and never subjective
experiences (including the experience of pleasure). However, progress in the past 50 years proves that
many complex psychological processes involving subjective experience can be successfully studied
and related to underlying brain mechanisms. Still, some objections persist today. For example,
LeDoux’s recent recommendation that affective neuroscientists should focus only on behavioral
affective reactions, rather than on subjective emotions, shares those earlier concerns (LeDoux, 2014).

In our view, a neuroscience of pleasure can be pursued as successfully as the neuroscience of
perception, learning, cognition or other well-studied psychological functions. The crucial test of this
proposition is: can affective neuroscience produce important new conclusions into how brain systems
mediate hedonic impact? Evidence in support of this, we think, now exists in the form of recent
findings. In this article we discuss some of these new findings, including 1) separation of reward liking,
wanting, and learning mechanisms in mesocorticolimbic circuitry; 2) identification of overlap in neural
circuitry underlying sensory pleasures and higher pleasures; 3) identification of particular sites in
prefrontal limbic cortex that encode pleasure impact; 4) mapping of surprisingly localized causal
hedonic hotspots that generate amplifications of pleasure reactions; 5) discovery that nucleus
accumbens (NAc) hotspot and coldspot mechanisms are embedded in an anatomically-tuned keyboard
organization of generators in nucleus accumbens that extends beyond reward liking and wanting to
negative emotions of fear and disgust; and 6) identification of multiple neurochemical modes within
NAc mechanisms that can retune keyboard generators into flipping between oppositely-valenced
motivations of desire and dread.

A neuroscience of pleasure

In a sense, pleasure can be thought of as evolution’s boldest trick, serving to motivate an individual to
pursue rewards necessary for fitness, yet in modern environments of abundance also inducing
maladaptive pursuits such as addictions. An important starting point for understanding the underlying
circuitry is to recognize that rewards involve a composite of several psychological components: liking
(core reactions to hedonic impact), wanting (motivation process of incentive salience), and learning
(Pavlovian or instrumental associations and cognitive representations) (Berridge and Robinson, 2003).
These component processes also have discriminable neural mechanisms. The three processes can occur
together at any time during the reward-behavior cycle, though wanting processes tend to dominate the
initial appetitive phase, while liking processes dominate the subsequent consummatory phase that may
lead to satiety. Learning, on the other hand, happens throughout the cycle. A neuroscience of reward
seeks to map these components onto necessary and sufficient brain networks (see Figure 1).

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425246/figure/F1/
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Figure 1
Causal hedonic hotspots and coldspots in the brain

A) Top shows positive hedonic orofacial expressions (‘liking’) elicited by sucrose taste in rat, orangutan, and
newborn human infant. Negative aversive (‘disgust’) reactions are elicited by bitter taste. B) shows sagittal
view of hedonic hotspots in rat brain containing nucleus accumbens, ventral pallidum, and prefrontal cortex.
Hotspots (red) depict sites where opioid stimulation enhances ‘liking’ reactions elicited by sucrose taste.
Coldspots (blue) show sites where the same opioid stimulation oppositely suppresses ‘liking’ reactions to
sucrose. C) Nucleus accumbens blow-up of medial shell shows effects of opioid microinjections in NAc
hotspot and coldspot. (red/orange dots in hotspot = >200% increases in ‘liking’ reactions; blue dots in
coldspot = 50% reductions in ‘liking’ reactions to sucrose). Panels show separate hedonic effects of mu
opioid, delta opioid and kappa opioid stimulation via microinjections in NAc shell on sweetness ‘liking’
reactions. Bottom row shows effects of mu, delta or kappa agonist microinjections on establishment of a
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Objective hedonic reactions

learned place preference (i.e., red/orange dots in hotspot) or place avoidance (blue dots). Surprisingly similar
patterns of anterior hedonic hotspots and posterior suppressive coldspots are seen for all three major types of
opioid receptor stimulation. Modified from (Castro and Berridge, 2014).

To study pleasure comprehensively, good human neuroimaging studies are needed to explore
correlative encoding of pleasant experiences, and good animal studies are needed to explore causation
of underlying hedonic reactions. This two-pronged approach exploits a fundamental duality in hedonic
processes, related to the objective versus subjective faces of pleasure (Damasio and Carvalho, 2013;
Kringelbach and Berridge, 2010; Schooler and Mauss, 2010; Winkielman et al., 2005). Pleasure is
sometimes assumed to be a purely subjective feeling. But pleasure also has objective features in the
form of measurable hedonic reactions, both neural and behavioral, to valenced events. In this review
we denote objective hedonic reactions as ‘liking’ reactions (with quotes) to distinguish them from the
subjective experience of liking (in the ordinary sense, without quotes). Objective hedonic reactions can
be measured in both human and animal neuroscience studies, which together allow some comparisons
across species and can lead to a more complete causal picture of how brain systems mediate hedonic
impact.

Evolutionary origins of brain systems for hedonic reactions

The ultimate explanation for why pleasure encompasses both objective and subjective levels of
reaction likely lies in evolutionary history. Darwin (1872) originally suggested that affective reactions
were selected by evolution for their useful functions, which were adapted into emotional expressions
(Darwin, 1872). Following Darwin’s logic, modern affective neuroscience also posits brain
mechanisms of emotional reactions to mediate evolved “survival functions” (LeDoux, 2012), with
emotional “core features that can form the basis for studies of emotion across phylogeny” (p. 198)
(Anderson and Adolphs, 2014), which can be usefully exploited by objective studies.

The selection of hedonic reactions has required the evolution of mammalian brains to dedicate millions
of developing neurons into mesocorticolimbic patterns of reward circuitry (Haber and Knutson, 2010).
Such neural investment was subject to the same selection pressures that shaped evolution of any other
function. Hedonic circuitry was therefore unlikely to have been shaped into its present form, or to have
persisted throughout evolution, unless objective affective reactions actually conveyed significant
consequences in terms of benefits for survival and fitness (Anderson and Adolphs, 2014; Damasio,
2010; Kringelbach and Berridge, 2010; LeDoux, 2012; Panksepp, 2011). Objective affective reactions
likely appeared first during evolution, with subjective affective reactions following in some species, via
the evolution of more elaborate and hierarchical brain mesocorticolimbic circuitry to translate core
‘liking’ reactions into conscious feelings of pleasure (Damasio and Carvalho, 2013).

A useful example of an objective hedonic reaction is the orofacial affective
expression of ‘liking’ elicited by tastes in newborn human infants (Steiner, 1973). Positive taste ‘liking’
versus negative ‘disgust’ expressions can be elicited on the first post-natal day (Figure 1). Sweet tastes
elicit positive hedonic ‘liking’ expressions comprising relaxed facial muscles and a contented licking of
the lips, whereas bitter tastes elicit ‘disgust’ expressions. Homologous ‘liking’ orofacial expressions
can be elicited also in apes and monkeys, and even in rats and mice (e.g., rhythmic tongue protrusions
and lateral lip licking to sweetness versus gapes and headshakes to bitterness)(Berridge, 2000; Grill
and Norgren, 1978a; Steiner et al., 2001). The basic sensorimotor circuitry of these affective
expressions resides in the brainstem (Grill and Norgren, 1978b; Steiner, 1973), but such affective
expressions are not mere brainstem reflexes, but rather are hierarchically controlled by forebrain

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425246/figure/F1/
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Subjective versus objective levels of hedonic reaction

structures. Forebrain circuitry exerts powerful descending control over brainstem and behavioral
output. One consequence is that ‘liking’ expressions elicited by a given taste are appropriately
modulated physiologically by relevant appetite versus satiety states (Cabanac and Lafrance, 1990;
Kaplan et al., 2000) as well as associatively by learned preferences and aversions. (Delamater et al.,
1986). ost strikingly, ‘liking’ reactions are powerfully controlled by discrete neural manipulations
located in several limbic forebrain structures, as will be discussed (Castro and Berridge, 2014; Mahler
et al., 2007; Peciña and Berridge, 2005; Smith and Berridge, 2005).

‘Liking’ facial expressions also belong to the consummatory class of motivated behaviors, which
typically occurs after an initial appetitive phase of flexible seeking behavior (Craig, 1918; Sherrington,
1906). Those hedonic reactions co-occur with several other ingestive consummatory reactions,
including voluntary consumption of food, the microstructure of consumption movements (often
measured as spout-lick patterns by lickometer in animal studies) and the simple brainstem decision to
swallow food in the mouth. But consummatory reactions are highly heterogeneous. In particular,
affective reactions taste reactivity patterns have a uniquely specific relation to the hedonic evaluation
of taste ‘liking’, and sometimes for that reason dissociate from all other consummatory reactions
(Berridge, 2000). Dissociation is most commonly induced by manipulations that alter motivational
(i.e., ‘wanting’) but not hedonic aspects (‘liking’) of the value of a food incentive. For example,
dopamine suppressions reduce the incentive value of sweetness similar to sucrose dilution, as reflected
in changes in lickometer measures of ingestive microstructure (Galistu and D'Aquila, 2012; Smith,
1995) as well as suppressing appetitive seeking and sometimes food intake (Wise and Raptis, 1986).
Yet, taste reactivity ‘liking’ expressions are not diminished by such pharmacological dopamine
blockade (Peciña et al., 1997), nor even by complete destruction of mesolimbic dopamine projections.
Such dissociations have indicated that dopamine is not actually needed for the hedonic impact of food
pleasure, but rather only for their incentive motivation value, as described further below.

As mentioned above, to avoid confusion it is
useful to use ‘liking’ (in quotes) to specifically refer to behavioral or neural hedonic reactions, whether
or not those objective ‘liking’ reactions are accompanied by a corresponding conscious liking or feeling
of pleasure (which may require additional neural mechanisms). A similar distinction applies to
conscious wanting versus the mesolimbic motivation process of incentive salience or ‘wanting’ and its
objective consequences. The subjective versus objective distinction is based also on evidence that even
in humans the two forms of hedonic reaction can be independently measured. For example, objective
hedonic ‘liking’ reactions can sometimes occur alone and unconsciously in ordinary people without
any subjective pleasure feeling at all, at least in particular situations (e.g., evoked by subliminally brief
or mild affective stimuli) (Childress et al., 2008; Fischman and Foltin, 1992; Winkielman et al., 2005).
Unconscious ‘liking’ reactions still effectively change goal-directed human behavior, though those
changes may remain undetected or be misinterpreted even by the person who has them (Bargh et al.,
2012; Childress et al., 2008; Pessiglione et al., 2007; Winkielman et al., 2005). More commonly,
‘liking’ reactions occur together with conscious feelings of liking, and provide a hedonic signal input to
cognitive ratings and subjective feelings. However, dissociations between the two levels of hedonic
reaction can still sometimes occur in normal people due to the susceptibility of subjective ratings of
liking to cognitive distortions by framing effects, or as a consequence of theories concocted by people
to explain how they think they should feel (Gilbert and Wilson, 2009; Schooler and Mauss, 2010). For
example, framing effects can cause two people exposed to the same stimulus to report different
subjective ratings, if one of them had a wider range of previously experienced hedonic intensities (e.g.,
pains of childbirth or severe injury) (Bartoshuk, 2014). In short, there is a difference between how
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people feel and report subjectively versus how they objectively respond with neural or behavioral
affective reactions. Subjective ratings are not always more accurate about hedonic impact than
objective hedonic reactions, and the latter can be measured independently of the former.

Mapping pleasure in the brain

The experience of one pleasure often seems very different from another. Eating delicious foods,
romantic or sexual pleasures, addictive drugs, listening to music, or seeing a loved one: each feels
unique. The only psychological feature in common would seem that all are pleasant. However, the
difference in one’s subjective experiences is not necessarily a good guide to the underlying neural
mechanisms. Those neural mechanisms may overlap to a surprising degree.

Over the last decades, a growing set of results from neuroimaging studies have suggested that many
diverse rewards activate a shared or overlapping brain system: a ‘common currency’ reward network of
interacting brain regions. Pleasures of food, sex, addictive drugs, friends and loved ones, music, art,
and even sustained states of happiness can produce strikingly similar patterns of brain activity
(Cacioppo et al., 2012; Georgiadis and Kringelbach, 2012; Kringelbach et al., 2012; Parsons et al.,
2010; Salimpoor et al., 2011; Vartanian and Skov, 2014; Veldhuizen et al., 2010; Vuust and
Kringelbach, 2010; Xu et al., 2011; Zeki and Romaya, 2010). These shared reward networks include
anatomical regions of prefrontal cortex, including portions of orbitofrontal, insula, and anterior
cingulate cortices, as well as often subcortical limbic structures such as nucleus accumbens (NAc),
ventral pallidum (VP), and amygdala (shown for rats and humans in Figure 2). An implication of the
‘common currency’ hypothesis is that insights into brain hedonic substrates gained by experiments
using one kind of pleasure, such as food ‘liking’, may apply to many other pleasures too.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425246/figure/F2/
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Figure 2
Three-dimensional comparison of hedonic sites in rat brain (left) and human brain (right)

A. Rat brain shows hedonic hotspots (red) and coldspots (blue) in coronal, sagittal, horizontal planes and in
3D fronto-lateral perspective view (clockwise from top left). B. Human brain shows extrapolation of rat
causal hotspots to analogous human sites in NAc and VP (red), and shows fMRI coding sites for positive
affective reactions in green (from text). Human views are also in coronal, sagittal, horizontal and 3D
perspective (clockwise from top left of B). The tentative functional networks between the different hotspots
and coldspots have been added to give an impression of the topology of a pleasure network. The functional
connection lines are not meant to imply direct anatomical projections between two connected structures, but
rather a functional network in mediating hedonic ‘liking’ reactions and subjective pleasure ratings.
Abbreviations: VP, ventral pallidum; NAc, nucleus accumbens; PBN, parabrachial nucleus; mOFC, medial
orbitofrontal cortex; lOFC, lateral orbitofrontal cortex; midOFC, mid-anterior orbitofrontal cortex; dACC,
dorsal anterior cingulate cortex; rACC, rostral anterior cingulate cortex; PAG, periaqueductal gray.

Admittedly fMRI measures have limits in spatial and temporal resolution that might miss small or fast
differences among neural subsystems that encode particular rewards. It remains possible that more
fine-grained spatial and temporal multivariate pattern analysis techniques (Haynes and Rees, 2006;
King and Dehaene, 2014) will identify subsets of limbic neural circuitry particular to just one type of
reward (Chikazoe et al., 2014). Consistent with this, subtle differences may be found in neuronal firing
in animal studies between different sensory rewards, such as tasty foods versus addictive drugs (though
some neural differences may be due to accompanying confounds, such as different movements required
to obtain the different rewards, or sensory accompaniments, rather than to unique reward encoding per
se) (Cameron and Carelli, 2012). Still, so far, the balance of evidence suggests rather massive overlap
between neural systems that mediate rewards of different types. The overlap is far more extensive than
many might have expected based on the subjective differences in experiences.

One human brain site that appears especially linked to pleasure in neuroimaging studies is in
orbitofrontal cortex, particularly in a mid-anterior subregion (Figures 2 and 3). Other medial regions of
orbitofrontal cortex, middle anterior regions of insula cortex, and ventromedial regions of prefrontal
cortex cortices also correlate with subjective pleasure ratings, but many of these other regions appear to
be more concerned with monitoring or predicting reward values than with generating the pleasure per

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425246/figure/F2/
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se (Georgiadis and Kringelbach, 2012; Kahnt et al., 2010; Kringelbach, 2010; Kringelbach et al., 2003;
O’Doherty, 2014; Schoenbaum and Roesch, 2005; Veldhuizen et al., 2010; Vuust and Kringelbach,
2010).

Figure 3
Hedonic coding in the human orbitofrontal cortex (OFC)

In humans, the orbitofrontal cortex is an important hub for pleasure coding, albeit heterogeneous, where
different sub-regions are involved in different aspects of hedonic processing. A) Neuroimaging investigations
have found differential activity to rewards depending on context in three subregions: the medial OFC
(mOFC), mid-anterior OFC (midOFC) and lateral OFC (lOFC). B) A meta-analysis of neuroimaging studies
showing task-related activity in the OFC demonstrated different functional roles for these three sub-regions.
In particular, the midOFC appears to best code the subjective experience of pleasure such as food and sex
(orange), while mOFC monitors the valence, learning and memory of reward values (green area and round
blue dots). However, unlike the midOFC, activity in the mOFC is not sensitive to reward devaluation and thus
may not so faithfully track pleasure. In contrast, the lOFC region is active when punishers force a behavioural
change (purple and orange triangles). Furthermore, the meta-analysis showed a posterior-axis of reward
complexity such that more abstract rewards (such as money) will engage more anterior regions to more
sensory rewards (such as taste). C) Further investigations into the role of the OFC on the spontaneous
dynamics during rest found broadly similar sub-divisions in terms of functional connectivity (Kahnt et al.,
2012) with an optimal hierarchical clustering of four to six OFC regions. This included medial (1), posterior
central (2), central (3) and lateral (4–6) clusters with the latter spanning an anterior-posterior gradient (bottom
of Fig 3B), and connected to different cortical and subcortical regions (top of Figure 3B). Taken together,
both the task-related and resting-state activity provides evidence for a significant role of the OFC in a
common currency network. It is also compatible with a relatively simple model where primary sensory areas
feed reinforcer identity to the OFC where it is combined to form multi-modal representations and assigned a
reward value to help guide adaptive behaviour (Kringelbach and Rolls, 2004). Images in A are reproduced
from (Kringelbach et al., 2004; Kringelbach et al., 2003).

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425246/figure/F3/
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It is important to remember that neuroimaging studies are correlational in nature rather than causal, and
that the physiological bases of underlying signals (such as the BOLD signal measured with fMRI) are
only partly understood (Winawer et al., 2013). Interpreting correlational signals is complicated. Some
correlational neuroimaging activity may of course reflect causal mechanisms for pleasure, while other
activity may be a consequence, rather than cause. That is because many brain regions that become
active during a normal pleasure may not actually generate that pleasure per se, but rather activate as a
step to causally generating their own different functions, such as cognitive appraisal, memory,
attention, and decision making about the pleasant event.

However, the mid-anterior subregion of orbitofrontal cortex in particular does appear to track
subjective pleasure more accurately than most other limbic regions (Figure 3). One of the strongest
tests for pleasure coding is to hold the pleasant stimulus constant across successive exposures, but vary
its hedonic impact by altering other input factors such as relevant physiological states. For example,
evidence suggests that mid-anterior orbitofrontal activity tracks sensory satiety, involving selective
declines in the subjective pleasantness of a given food’s taste after consuming a lot of it, compared to
another food which is not devalued (Gottfried et al., 2003; Kringelbach et al., 2003). Tracking a change
in pleasure of a stimulus is the strongest possible correlational evidence, because it shows the activity
is not coding mere sensory features (e.g., sweetness) or other stable confounds. The same region of
OFC has also been implicated in the encoding pleasures of sexual orgasm, drugs, and music
(Georgiadis and Kringelbach, 2012; Kringelbach, 2010; Kringelbach et al., 2003; Salimpoor et al.,
2011; Veldhuizen et al., 2010; Vuust and Kringelbach, 2010). Subcortically, there is evidence from
other animals that such selective hedonic changes also may be tracked by activity in nucleus
accumbens and ventral pallidum (Krause et al., 2010; Loriaux et al., 2011; Roitman et al., 2010; Tindell
et al., 2006).

Some studies also indicate lateralization of affect representation, often as lateralized hemispheric
differences in coding positive versus negative valence. Most notably, the left hemisphere of prefrontal
cortex often has been implicated more in positive affect than right hemisphere (Davidson, 2004). For
example, individuals who give higher ratings of subjective well-being may have higher activity in left
than right prefrontal cortex, and activity of left subcortical striatum also may be more tightly linked to
pleasantness ratings than right-side (Kuhn and Gallinat, 2012; Lawrence et al., 2012; Price and
Harmon-Jones, 2011). However, other studies have found more equal or bilateral activity patterns, and
so the precise role of lateralization in pleasure still needs further clarification.

An important caveat of human neuroimaging studies is that these have traditionally compared a
hedonic activation with a baseline at rest. Recently, it has become clear that the brain is never truly
resting but rather spontaneously active and constantly switching between different resting state
networks (Cabral et al., 2014). The switching between different networks depend on the state of the
brain, and so one way to think about the pleasure system is to facilitate the state transition between
different points in the pleasure cycle to optimize survival. Plausibly, the so-called default mode network
may play an essential role in this, and thus problems in orchestrating the state transitions may manifest
as anhedonia in affective disorders (Kringelbach and Berridge, 2009). With advanced computational
modelling of human neuroimaging data this is now becoming a testable hypothesis (Cabral et al.,
2012). New efforts have given birth to computational neuropsychiatry as a way to discover novel
biomarkers for affective states and in neuropsychiatric disorders, and potentially help rebalance brain
networks (Deco and Kringelbach, 2014).

Mapping brain pleasure generators?

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425246/figure/F3/
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Mapping causal generators of pleasure in the brain is a challenge because it can require invasive brain
manipulations, needed to establish evidence for causation, which are ruled out by legitimate ethical
constraints in human studies. However, evidence from animal studies is revealing a network of hedonic
hotspots that causally enhance ‘liking’ reactions to pleasant stimuli, and coldspots that diminish the
‘liking’ reactions (Figure 2).

A useful starting distinction is between causation of loss versus gain of function. In loss of function,
lesions or neural dysfunctions reveal mechanisms that are necessary for normal function. In gain of
function, neurobiological stimulations reveal mechanisms that are sufficient to cause higher levels of
hedonic impact. While some neural structures mediate both forms of causation for hedonic function,
other neural mechanisms may mediate only one: for example, able to produce gains of function that
enhance pleasure reactions without being needed for normal pleasure. Brain structures able to cause
gains in hedonic function may be more widely distributed than structures needed for normal pleasure
reactions, which are more anatomically restricted and subcortically weighted. Further, both forms of
causation may be more restricted than the coding activity revealed by neuroimaging correlations with
pleasure described above.

As illustration, entire limbic regions of human prefrontal cortex appear surprisingly unnecessary for the
causal generation of normal pleasure. For example, the surgical procedure of prefrontal lobotomy,
performed on thousands of patients during the 1950s, removed or disconnected most of their prefrontal
lobe (Valenstein, 1986). Yet lobotomy patients retained most hedonic feelings as far as could be
discerned (albeit showing impairments in cognitive judgment), as do other human patients with
similarly large prefrontal cortex lesions arising from stroke, tumor or injury (Damasio, 1994;
Szczepanski and Knight, 2014). A dramatic recent report confirmed that even more massive cortical
damage, destroying not only prefrontal orbitofrontal and ventromedial cortex but also frontal insula and
ventral anterior cingulate cortex (plus hippocampus and amygdala in the rostral temporal lobe), left
intact normal behavioral affective reactions to preferred social partners or frightening syringes, and
even verbal hedonic reports such as “I have a strong feeling of happiness, that we are here together
working on these wonderful games” (Damasio et al., 2012).

Stark examples of subcortical causation of normal hedonic reactions in people also include
hydranencephalic children, who essentially lack a telencephalic forebrain and have virtually no cortex,
yet may still show complex emotional responses to social caregivers and music. For example,
Shewmon et al. described complex behavioral hedonic reactions in hydranencephalic children, such as
in a 6-year old boy born with congenital “absence of cerebral tissue rostral to the thalamus, except for
small mesial temporal-lobe remnants” (p. 364), who still “smiled when spoken to and giggled when
played with. These human interactions were much more intense than, and qualitatively different from,
his positive reactions to favorite toys and music.” (p. 366) (Shewmon et al., 1999). Similarly, Merker
reported that other hydranencephalic children "express pleasure by smiling and laughter, and aversion
by ‘fussing’, arching of the back and crying (in many gradations), their faces being animated by these
emotional states. A familiar adult can employ this responsiveness to build up play sequences
predictably progressing from smiling, through giggling, to laughter and great excitement on the part of
the child."(p. 79)(Merker, 2007). Such cases of human emotional reaction without (hardly any) cortex
indicate that subcortical structures may be surprisingly competent to generate many normal hedonic
reactions, and are consistent with many animal studies.

Causal hedonic hotspots for hedonic enhancements
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Yet hedonic gains of function can be produced by neural events in several forebrain structures,
resulting in intense pleasure reactions. Animal affective neuroscience studies have recently identified a
network for generating hedonic enhancement of ‘liking’ reactions, embedded as a set of small hedonic
hotspots distributed among several limbic structures throughout the brain, ranging from cortex to
brainstem. Each hotspot can specifically amplify orofacial ‘liking’ expressions elicited by sweetness in
rats, when neurochemically stimulated by an appropriate drug microinjection. Hedonic hotspots have
been found in subcortical forebrain nucleus accumbens and connected ventral pallidum, in the
brainstem parabrachial nucleus of the pons, and may now be emerging in limbic areas of prefrontal
cortex, including orbitofrontal cortex and insula (Castro and Berridge, 2014; Castro et al., 2014; Ho
and Berridge, 2013; Peciña and Berridge, 2005; Smith and Berridge, 2005; Soderpalm and Berridge,
2000).

The size of hedonic hotspots mapped so far is each about 1 cubic millimeter in volume in rats (which
might be extrapolated to a cubic centimeter in humans, if proportional to brain size). By comparison,
each structure that contains a hotspot is much larger. For example, the entire nucleus accumbens
comprises nearly 10 mm  in rats, but its opioid hedonic hotspot located in the rostrodorsal quadrant of
medial shell constitutes only 10% of total NAc volume (and about 30% of volume of medial shell;
shown in Figures 1 & 2) (Castro and Berridge, 2012; Peciña and Berridge, 2005). In other words, as far
as is known, nearly 90% of the remaining NAc may lack capacity to enhance ‘liking’ reactions, even
for mu opioid stimulation.

In more detail, inside the rostrodorsal hotspot of medial shell in NAc, mu opioid stimulation via agonist
microinjections can at least double the hedonic impact of sucrose, as reflected in more ‘liking’
reactions (Peciña and Berridge, 2005; Smith et al., 2011). Somewhat surprisingly, delta opioid
stimulation or even kappa opioid stimulation also in the same NAc hotspot will similarly enhance
hedonic impact of sweetness (Castro and Berridge, 2014). At other sites in NAc medial shell, all three
types of opioid stimulations fail to enhance ‘liking’ reactions, and indeed all oppositely suppress
‘liking’ reactions at a ‘coldspot’ site in the caudal half of medial shell. That localization suggests the
NAc rostrodorsal hotspot is really quite unique as a mechanism for gating hedonic gain of function.
Independently, a unique role for the NAc hotspot was confirmed using conditioned place preference
tests: mu, kappa and delta stimulations all establish positive preferences for a place paired with the
microinjections in hotspot, but not at other sites in NAc medial shell (Castro and Berridge, 2014).
Beyond opioid signals, endocannabinoid stimulation by microinjections of anandamide similarly
enhances ‘liking’ reactions in an overlapping subregion of NAc medial shell (Mahler et al., 2007). The
anatomical overlap between opioid and endocannabinoid hotspots in NAc raises the possibility that the
circuitry in the same hotspot may largely mediate both neurochemical forms of pleasure enhancement.

What makes the NAc hotspot so special? The full answer remains for future, but some insights are
emerging from recent reports that the NAc hotspot in rostrodorsal medial shell has unique
neuroanatomical features, and also unique neurochemical features, different from other subregions of
medial shell and NAc core (Britt and McGehee, 2008; Kupchik and Kalivas, 2013; Thompson and
Swanson, 2010; Zahm et al., 2013).

Beyond NAc, the ventral pallidum (VP) is a major target of NAc projections. The VP also contains its
own hotspot located at posterior end (Ho and Berridge, 2013; Smith and Berridge, 2005). The VP
hotspot similarly is about 1mm  in volume, constituting less than one-half of the total VP. In the VP
hotspot, either mu opioid or orexin-A stimulating microinjections more than double the level of ‘liking’
reactions elicited by sweetness (Ho and Berridge, 2013; Smith and Berridge, 2005). Conversely, more
rostrally in VP, a hedonic coldspot of similar volume exists where mu opioid stimulation oppositely
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Hotspots at top and bottom of the brain?

Interaction between hotpot site and neurochemical stimulation

reduces sweetness ‘liking’ (Smith and Berridge, 2005). Recent optogenetic studies have also begun to
help confirm this hedonic gain of function capacity, by indicating that optogenetic excitation
(channelrhodopsin) of neurons within the VP hotspot can double the number of ‘liking’ reactions to
sweetness (Castro and Berridge, 2013). Further optogenetic confirmations would provide valuable
independent validation of the hedonic function of the VP hotspot.

The circuitry connecting hotspots of nucleus accumbens and ventral pallidum remains unclear, and
they may not be directly connected. Yet the two hotspots functionally interact to form an integrated
circuit. For example, stimulating either hotspot can recruit activation of the other, and mutual
recruitment into simultaneous participation appears necessary to enhance ‘liking’ reactions, in the sense
that blocking opioid activation in either hotspot completely prevents mu opioid stimulation of the other
one from enhancing ‘liking’ (Smith and Berridge, 2007; Smith et al., 2011).

In the prefrontal cortex, recent evidence indicates that
orbitofrontal cortex and insula cortex may each contain their own additional hotspots (Castro et al.,
2014). In specific subregions of each area, either opioid-stimulating or orexin- stimulating
microinjections appear to enhance the number of ‘liking’ reactions elicited by sweetness, similar to
NAc and VP hotspots (Castro et al., 2014). Successful confirmation of hedonic hotspots in orbitofrontal
cortex or insula would be important, and possibly relevant to the orbitofrontal mid-anterior site
mentioned earlier that especially tracks the subjective pleasure of foods in humans (Georgiadis et al.,
2012; Kringelbach, 2010; Kringelbach et al., 2003; Small et al., 2001; Veldhuizen et al., 2010).

Finally, in brainstem, a hindbrain site near the parabrachial nucleus of dorsal pons also appears able to
contribute to hedonic gains of function (Soderpalm and Berridge, 2000). A brainstem mechanism for
pleasure may seem more surprising than forebrain hotspots to anyone who views brainstem as merely
reflexive, but the pontine parabrachial nucleus contributes to taste, pain and many visceral sensations
from the body, and has also been suggested to play an important roles in motivation (Wu et al., 2012)
and in human emotion (especially related to the somatic marker hypothesis) (Damasio, 2010). Further a
brainstem contribution to pleasure circuitry is quite consistent with a hierarchical view of brain
organization, which would suggest hedonic functions to be reiteratively represented at multiple levels
of the brain.

Hotspots generate hedonic enhancement
through an interaction between their specific anatomical site and their particular neurochemical state or
mode of stimulation. Neither alone is sufficient to enhance ‘liking’. For example, in the NAc hotspot in
rostrodorsal medial shell, microinjections of mu, delta, or kappa opioid agonists all double the ‘liking’
reactions elicited by sucrose taste, as does endocannabinoid stimulation in its overlapping hotspot
(Castro and Berridge, 2014; Mahler et al., 2007; Peciña and Berridge, 2005). But in the same NAc
hotspot, neither dopamine stimulation or glutamate AMPA blockade alter hedonic ‘liking’ for sucrose
at all, even though both elevate ‘wanting’ to eat as effectively as opioid stimulation (Faure et al., 2010;
Smith et al., 2011). In other words, in the NAc hotspot, the particular neurochemical mode determines
whether ‘liking’ for sweetness will be enhanced or not, as well controlling ‘wanting’ to eat.
Neurochemical mode is clearly as important as anatomical site. Yet outside the hotspot at other sites in
NAc shell, even mu opioid and endocannabinoid stimulations fail to enhance ‘liking’ at all (Castro and
Berridge, 2014; Mahler et al., 2007; Peciña and Berridge, 2005). In fact, NAc microinjections of mu,
delta or kappa opioid agonists in the posterior hedonic coldspot of shell all oppositely suppress ‘liking’
reactions elicited by sweetness to just half normal levels – even though mu stimulation at that posterior
NAc site still enhances cue-triggered ‘wanting’ to obtain reward and stimulates ‘wanting’ to eat as
much as in the anterior hotspot (Castro and Berridge, 2014; Pecina and Berridge, 2013). Thus
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Ventral pallidum hotspot: sufficient to enhance and needed for normal ‘liking’

anatomical site gates the hedonic effectiveness of those neurochemical modes. Clearly, it is the
interaction between hotspot site and mode of neurochemical stimulation that determines hedonic
impact.

Prefrontal cortex and
nucleus accumbens do share one interesting quirk regarding causation of hedonic impact. Both contain
hotspots able to cause gains of hedonic function for intense ‘liking’, but neither when damaged cause
loss of hedonic function: neither reducing positive ‘liking’ reactions nor increasing negative ‘disgust’
reactions. By contrast, the hedonic hotspot of posterior ventral pallidum combines causation for gain of
function with necessity for normal baseline levels of ‘liking’: that necessity is revealed after caudal VP
lesion by loss of positive ‘liking’ for sweetness and replacement by intense ‘negative disgust’ reactions
(e.g. gapes and headshakes elicited by sucrose) (Cromwell and Berridge, 1993; Ho and Berridge,
2014). In short, the posterior VP hotspot appears more crucial than any other known brain site for loss
of hedonic function after damage, at least for taste pleasure. Even classic lateral hypothalamic lesions
that once were thought to induce intense food disgust (Teitelbaum and Epstein, 1962), may have done
so actually only by additionally damaging the posterior ventral pallidum (Ho and Berridge, 2014;
Smith et al., 2010).

Besides lesions, temporary pharmacological inactivation in the posterior VP hotspot also causes intense
‘disgust’ (Ho and Berridge, 2014; Shimura et al., 2006). By comparison in NAc shell, intense ‘disgust’
is caused by only temporary inactivations (not lesions, suggesting disruptions must act to impair
hedonic impact before circuitry compensations can occur), and only in the posterior ‘coldspot’ (not
rostrodorsal ‘hotspot’) (Ho and Berridge, 2014). That difference between VP and NAc suggests that
NAc segregates hedonic gain of function versus loss of function into different anatomical sites of
medial shell, whereas the VP hotspot combines both forms of hedonic causation together(Ho and
Berridge, 2014). The VP hotspot thus appears unique among brain sites for hedonic loss of function.

The excessive disgust that follows these VP disruptions may be viewed as a release phenomenon,
produced by disinhibition of negative-valenced circuitry in the remaining forebrain diencephalon (Ho
and Berridge, 2014). Similar intense ‘disgust’ and other aversive emotions is also produced by large
ablations of the entire telencephalon that include the ventral pallidum as well as other telencephalic
forebrain structures, but leave intact the diencephalic hypothalamus and thalamus (Bard, 1928; Grill
and Norgren, 1978b), whereas positive reactivity is spared by lower transections of the brain, such as
midbrain decerebration (which eliminates all forebrain circuitry, including NAc, VP and hypothalamus)
(Grill and Norgren, 1978b). A disinhibition interpretation also fits a hierarchical view of how pleasure
and displeasure are organized in the brain (Hughlings Jackson, 1958).

Desire to dread: an affective keyboard in NAc shell

The anterior NAc opioid hedonic hotspot and posterior suppressive coldspot fit within a broader
anatomical NAc pattern of front-to-back valence organization in shell that generates additional
emotions beyond ‘liking’ and ‘disgust’. This NAc pattern resembles an affective keyboard arranged
rostrocaudally within medial shell, which can generate intense desire or even dread as well as hedonic
impact (Reynolds and Berridge, 2001; Richard and Berridge, 2011) (Figure 4). The keyboard pattern is
arranged from anterior to posterior ends of medial shell. At its anterior end, it generates predominantly
positive-valenced motivations in response to localized neural events such as microinjections of a
GABA agonist (muscimol) or of a glutamate AMPA antagonist (DNQX): eating more than twice
normal amounts of food, increasing appetitive seeking for food rewards (Stratford and Kelley, 1997;
Stratford and Wirtshafter, 2012; Wirtshafter et al., 2012), inducing a conditioned preference for a place

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425246/figure/F4/
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paired with the microinjection, and (for GABA microinjections) even increasing ‘liking’ reactions to
sweet tastes (Reynolds and Berridge, 2002). However, as the microinjection site moves more caudally
in NAc shell, appetitive behaviors decline. Instead negative ‘fearful’ behavior becomes increasingly
intense, and (for GABA) sweet tastes become also disgusting (Faure et al., 2010; Ho and Berridge,
2014; Reynolds and Berridge, 2002; Richard et al., 2013b).

Figure 4
Affective keyboard in nucleus accumbens for desire and/or dread

Top: A rostrocaudal keyboard pattern of generators in NAc for appetitive versus fearful behaviors, showing
consequences of microinjections of either glutamate AMPA antagonist or GABA agonist microinjections at
rostrocaudal sites in medial shell. Rostral green sites produced 600% increases in food consumption (desire
only). Caudal red sites generated purely increased fearful reactions at levels up to 600% over normal (escape
attempts, distress calls, defensive bite attempts; spontaneous anti-predator treading/burying e). Photos show
examples of antipredator treading/burying behavior elicited by threat stimuli: ground squirrel toward
rattlesnake predator, rat toward electric-shock prod in lab. The same antipredator behaviors occurs without
any specific threat stimulus after DNQX or muscimol microinjections in posterior NAc: denoted by red dots.
Yellow sites released both desire and fearful behaviors in the same rats during the same 1-hr test. Just as a
keyboard has many notes, bars reflect the many graded mixtures of affective desire-dread released as
microinjection sites move rostrocaudal location in medial shell (appetitive desire to eat at top; fearful dread
reactions at bottom). Bottom: Environmental ambience retuned the NAc keyboard. A comfortable ‘home
environment’ (the rat’s own home room: dark, quiet, smell and sound of conspecifics in the room) suppressed

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425246/figure/F4/
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Multiple anatomical modules in NAc shell

fearful behaviors, and expanded zone for appetitive behaviors, produced by microinjections that block
glutamate AMPA receptors (DNQX). A standard laboratory environment rebalances the keyboard into nearly
equal halves for desire versus dread. A stressfully over-stimulating sensory environment (bright lights plus
loud rock music) tilted the causal keyboard toward dread, and shrank the zoned that generated appetitive
desire. Squirrel photo by Cooke from (Coss and Owings, 1989). Figure data modified from (Richard et al.,
2013a), based on data from (Reynolds and Berridge, 2008; Richard and Berridge, 2011).

Of course, several other brain structures, from amygdala to hypothalamus, ventral pallidum or
brainstem also known to mediate various aversive emotional reactions, including fear, pain or disgust
(Baliki et al., 2010; LeDoux, 2012; von dem Hagen et al., 2009). The amygdala is especially crucial for
fear-related learning of passive responses to threats, such as freezing to a Pavlovian cue that predicts
footshock (LeDoux, 2012; Maren et al., 2013). The posterior NAc instead produces a more active set of
fearful coping reactions (Faure et al., 2010; Reynolds and Berridge, 2002; Richard et al., 2013b). For
example, these include distress calls and frantic escape leaps by a normally tame rat when approached
or touched by a human hand, and even defensive bites directed toward the offending hand, as active
unconditioned ‘fearful’ responses. Or when left alone after a microinjection, the rat spontaneously
often emits ‘fearful’ antipredator reactions that rodents typically use in the wild to defend against
natural threats (e.g., defensive burying toward a rattlesnake) (Coss and Owings, 1978). These defensive
reactions are usually targeted toward stimuli the affected rat may perceive as potentially threatening,
such as glittering transparent corners of the cage or experimenters visible beyond the transparent wall
(Coss and Owings, 1978; Reynolds and Berridge, 2002).

The number of differently-valenced rostrocaudal keys
contained in the nucleus accumbens shell is difficult to estimate, and in practice is defined somewhat
arbitrarily by the size of the microinjections used to tap the keyboard. But probably it contains more
than two keys corresponding to mere positive vs negative valence: two keys would generate only two
outputs, but the NAc shell generates many different incremental outputs of gradual variation depending
on precise site. Just as a musical keyboard generates many distinct notes, the rostrocaudal affective
keyboard generates multiple distinct quantities of appetitive versus fearful behaviors. For example, as
sites move from front to back, intense behaviors become gradually less appetitive, and incrementally
more fearful, so that many different ratio mixtures are produced, just as moving a brick along a piano
keyboard would generate many different mixtures of notes changing gradually in pitch.

However, a causal caveat may be needed here. To say an appetitive mechanism is densest in the
anterior half of NAc shell may really be to say that the anterior half is densest in neural mechanisms
which ordinarily inhibit appetitive behavior – and which themselves must be inhibited by the rostral
microinjection that produces the intense appetitive behavior. This disinhibition interpretation arises
because of the inhibitory nature of the GABA  agonist or glutamate antagonist microinjections that
produce the intense behaviors. The drug microinjections either hyperpolarize NAc neurons (i.e.,
muscimol stimulates GABA receptors) or at least block excitatory depolarizations of NAc neurons (i.e.,
via DNQX blocks glutamate AMPA receptors).

Both drugs produce similar motivation keyboard patterns of intense appetitive-fearful behaviors when
microinjected in medial shell, and the GABA agonist adds a corresponding hedonic keyboard of
‘liking-disgust’ effects (Faure et al., 2010; Richard and Berridge, 2011). A disinhibition interpretation
suggests that reduced activity of NAc projection neurons, which themselves release mostly GABA,
would release or disinhibit recipient neurons in target structures into relative excitation (e.g., in VP,

A



29/03/2019 16)45Pleasure systems in the brain

Page 16 sur 36https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425246/

Retuning the affective keyboard

hypothalamus, or ventral tegmentum) (Carlezon and Thomas, 2009; Meredith et al., 2008; Roitman et
al., 2005). Target excitations could be the final active mechanism to produce intense motivations.
Output projections from particular rostrocaudal sites in NAc shell appear partly segregated from each
other in target structures (Thompson and Swanson, 2010; Zahm et al., 2013), which might help tune the
valence of intense desire/dread motivations produced at different NAc sites. Although some contrary
evidence suggests that local NAc excitations also generate motivated behaviors (Britt et al., 2012; Taha
and Fields, 2005), this disinhibition hypothesis at least does potentially account for many features of
NAc in motivation (Carlezon and Thomas, 2009), including the NAc keyboard production of ‘desire’
versus ‘fear’.

Strikingly, the valence of desire-dread motivations generated by the
NAc keyboard is not necessarily fixed by anatomical location, but can be powerfully retuned
psychologically for many sites by emotional factors such as the valenced ambience of an environment (
Figure 4). At least, dramatic psychological retuning occurs for the glutamate-related DNQX gradient
that merely blocks local NAc excitation (Reynolds and Berridge, 2008; Richard and Berridge, 2011).
By comparison, the GABA-related muscimol gradient is more resistant to retuning, perhaps because it
involves stronger neuronal NAc hyperpolarization (Richard et al., 2013b). Retuning can completely
reverse the valence generated at a site from desire to dread, or back from dread to desire. For example,
the fear-generating zone of caudal shell expands in a stressfully bright and loud environment to invade
rostral shell, while simultaneously shrinking the desire-generating zone to only the far-rostral tip of
medial shell (Reynolds and Berridge, 2008; Richard and Berridge, 2011). Conversely, a quiet home-
like environment (which rats prefer) causes the NAc keyboard to expand its rostral desire-generating
zone into the caudal half of shell, and shrink the fear-generating zone into merely the far-caudal tip.
Such remapping can actually flip many intermediate sites of shell into releasing opposite motivations in
the different environments.

Speculatively, it can be hypothesized that some pathological human conditions might induce more
permanent retuning of NAc valence generators. For example, post-traumatic stress disorder might
persistently retune NAc generation in a fearful direction in human patients, similarly to a stressful
ambience. Conversely, human addiction and mesolimbic sensitization might retune NAc generators in
an appetitive direction, potentiating desire for addicted rewards. These possibilities could be explored
by future research.

For the glutamatergic keyboard in rats, the neurobiological mechanism of psychological retuning
appears to rewire local neurobiological modes of neurochemical activation within the local NAc
microdomain. For example, generation of ‘fear’ behaviors by NAc AMPA blockade requires
endogenous dopamine activity at both D1 and D2 receptors simultaneously within the local
microinjection site; the defensive motivation can be prevented by adding an antagonist for either
dopamine receptor to the eliciting DNQX microinjection (Faure et al., 2008; Richard and Berridge,
2011). By contrast, generation of appetitive desire, even at the same NAc site, requires only D1 activity
– not D2 activity (Richard and Berridge, 2011). That pattern suggests that direct and indirect output
paths of NAc may have different roles in this desire-dread generation. Dopamine D1 receptors occur
mostly on NAc neurons belonging to the ‘direct’ output path that includes a projection directly to
ventral tegmentum, whereas D2 receptors occur mostly on neurons belonging to the ‘indirect’ output
path that projects only to VP and hypothalamus (Humphries and Prescott, 2010). Thus both paths may
be equally important in producing the intense ‘fearful’ reaction, whereas positive ‘desire’ generation
may be dominated by the direct path (Richard and Berridge, 2011). If so, that would be consistent with
suggestions from others that a NAc D1 direct path dominates in appetitive motivation (Xiu et al.,
2014).

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425246/figure/F4/


29/03/2019 16)45Pleasure systems in the brain

Page 17 sur 36https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425246/

Finally, NAc keyboard tuning is regulated by corticolimbic top-down inputs from prefrontal limbic
cortex (Richard and Berridge, 2013). For example, raising local cortical excitations in infralimbic
cortex, a medial prefrontal region homologous to human subgenual anterior cingulate cortex (Area 25),
broadly suppressed the intensity of motivations otherwise produced by simultaneous NAc
microinjections, regardless of valence (Richard and Berridge, 2013). By comparison, excitation of the
orbitofrontal cortex tilted valence in a positive desire direction: at least in the sense of expanding the
appetitive zone that generates eating into caudal areas of NAc that otherwise produce negative ‘fear’
reactions (Richard and Berridge, 2013). Thus corticolimbic regulation adjusts both the intensity and
valence of motivations produced by NAc circuitry.

Pruning false candidates: Mesolimbic dopamine and ‘pleasure electrodes’?

Beyond identifying brain mechanisms that cause subjective feelings of pleasure or objective hedonic
reactions, progress in affective neuroscience is also aided by pruning away previous candidates for
pleasure generators that have failed to live up to their initial hedonic promise. In our view, two of the
most famous brain candidates for pleasure mechanisms featured in textbooks of the past few decades
turn out in the end to lack sufficient evidence needed to maintain their hedonic claim: 1) mesolimbic
dopamine systems that are activated by many reward-related stimuli, and 2) most so-called ‘pleasure
electrodes’ for deep brain stimulation that supported behavioral self-administration (i.e., animals or
people were willing to work to stimulate the electrodes, such as by pressing a button). As discussed
next, our view is that neither dopamine nor most ‘pleasure electrodes’ actually caused hedonic
reactions or pleasure after all, but rather more specifically increased motivation components of reward
such as incentive salience, producing ‘wanting’, without causing ‘liking’ or true hedonic impact.

Mesolimbic dopamine and the (an)hedonia hypothesis

The mesolimbic dopamine system has been the most famous neurochemical candidate in the past half
century for a pleasure generator in the brain. The mesolimbic system contains dopamine neurons
originating in or near the ventral tegmental area (VTA) of the midbrain, which chiefly ascend to the
NAc or ventral striatum, as well as to amygdala, prefrontal cortex and neostriatum. Mesolimbic
dopamine systems clearly do play an important role in reward, but that role may not be as hedonic as
once thought.

The idea that dopamine was a mechanism for pleasure is known as the ‘dopamine hedonia’ or
‘dopamine pleasure’ hypothesis, and was originally proposed by Roy Wise: “dopamine junctions
represent a synaptic way station…where sensory inputs are translated into the hedonic messages we
experience as pleasure, euphoria or ‘yumminess’.”(Wise, 1980) (p. 94). Conversely, the ‘dopamine
pleasure hypothesis’ postulated that reduction of dopamine neurotransmission caused loss of pleasure.
This inverse hypothesis is known as the ‘dopamine anhedonia hypothesis’ (Ettenberg and McFarland,
2003; Hnasko et al., 2006; Smith, 1995; Wise and Colle, 1984; Wise et al., 1978).

However, today relatively few neuroscientists who study dopamine in reward appear to assert in print
that dopamine causes pleasure. Even original proponents are no longer so enthusiastic. For example, by
the mid-1990s Wise had retracted the dopamine hedonia hypothesis: he was quoted to say “I no longer
believe that the amount of pleasure felt is proportional to the amount of dopamine floating around in
the brain” (p.35) (Wickelgren, 1997), and more recently concluded that “pleasure is not a necessary
correlate of dopamine elevations” (p.179)(Wise, 2008).
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The decline in advocacy of the dopamine pleasure hypothesis stems from of a series of problems that
arose in the past two decades. The first problem specifically applied to the anhedonia versions that
posited loss of pleasure. Evidence began to emerge that loss of dopamine doesn’t necessarily reduce
pleasure after all. For example, in rats even near complete destruction of nigrostriatal and mesolimbic
dopamine neurons to approximately 1% normal levels, via extensive 6-hydroxydopamine neurotoxin
lesions, turns out to leave orofacial ‘liking’ reactions to sweetness completely intact and unimpaired
(Berridge and Robinson, 1998). Similarly for human ratings of subjective pleasure, Parkinson’s
patients who have extensive dopamine depletion due to their disease still give normal hedonic ratings
of liking to the sensory pleasure of a sweet taste (Meyers et al., 2010; Sienkiewicz-Jarosz et al., 2013).
And human subjective ratings of drug pleasure (e.g., cocaine) are not reduced by pharmacological
disruption of dopamine systems, even when dopamine suppression does reduce wanting ratings (Brauer
and De Wit, 1997; Leyton et al., 2007)

Related questions have arisen recently about whether other types of clinical 'anhedonia' truly live up to
their lack-of-pleasure label, such as in depression or of schizophrenia. Closer inspection has suggested
that many patients with conditions may not be anhedonic any more than Parkinson’s patients: at least
sensory pleasures may persist virtually intact (Barch et al., 2014; Dowd and Barch, 2010; Sienkiewicz-
Jarosz et al., 2005; Treadway and Zald, 2011). This has given rise in some cases to a reinterpretation of
anhedonia as ‘avolition’ or more specific impairment of incentive motivation.

Dopamine elevations produce higher ‘wanting’ without higher ‘liking’?

Conversely, dopamine stimulations do not reliably cause pleasure. Dopamine elevations in NAc fail to
enhance ‘liking’ for sweetness, despite increasing motivational ‘wanting’ to obtain the same rewards
(e.g., higher runway performance of hyper-dopaminergic mutant mice; higher peaks of cue-triggered
effort to obtain sucrose reward, increases in reward consumption, and higher peaks of neural firing in
NAc-VP circuits that encode cue-triggered ‘wanting’)(Pecina and Berridge, 2013; Peciña et al., 2003;
Smith et al., 2011; Wyvell and Berridge, 2000). In people, L-DOPA-evoked surges in brain dopamine
levels do not increase subjective pleasure ratings (Liggins et al., 2012). The intensity of dopamine NAc
surges even when evoked by addictive drugs (e.g., amphetamine) correlates rather poorly with
subjective liking ratings - but correlates much better with wanting ratings (Evans et al., 2006; Leyton et
al., 2002). Examples of ‘wanting’-without-‘liking’ induced by dopamine stimulation also come from
compulsive motivations induced in Parkinson’s patients treated with high-doses of dopamine agonists,
especially direct D2/D3 receptor agonists (O'Sullivan et al., 2009). Those intense motivations range
from gambling to shopping, pornography, internet, hobbies, addictive drugs, or taking excessive
medication in addictive fashion (Callesen et al., 2013; Friedman and Chang, 2013; Ondo and Lai,
2008; Politis et al., 2013). Yet these cases typically do not report intense pleasure.

An important goal in future for addiction neuroscience is to understand how intense motivation
becomes narrowly focused on a particular target. Addiction has been suggested to be partly due to
excessive incentive salience produced by sensitized or hyper-reactive dopamine systems that produce
intense ‘wanting’ (Robinson and Berridge, 1993). But why one target becomes more ‘wanted’ than all
others has not been fully explained. In addicts or agonist-stimulated patients, the repetition of
dopamine-stimulation of incentive salience becomes attributed to particular individualized pursuits,
such as taking the addictive drug or the particular compulsions. In Pavlovian reward situations, some
cues for reward become more ‘wanted’ more than others as powerful motivational magnets, in ways
that differ across individuals (Robinson et al., 2014b; Saunders and Robinson, 2013). The control of
this narrow directional focus for intense incentive salience may involve dopamine system interactions
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Resolving the cocaine puzzle?

Dopamine and reward learning?

with learning-related structures, including amygdala-related circuitry (Difeliceantonio and Berridge,
2012; Koob and Volkow, 2010; Mahler and Berridge, 2012; Robinson et al., 2014a). But more remains
to be done to clarify how these neural mechanisms control what gets ‘wanted’ most in addictions.

Another puzzle has been that if dopamine does not cause sensory
pleasure, why are dopamine-promoting drugs such as cocaine or methamphetamine so pleasant? There
are several potential answers, both psychological and neurobiological. A psychological explanation
may be that at least some of the euphoria of cocaine or amphetamine drugs comes from a ‘wanting’
component of reward. That is, high incentive salience is just one component used to construct reward
experiences (together with high hedonic impact). But on its own, elevated incentive salience induced
by dopamine stimulation may to some extent be mistaken for pleasure itself. Drug enhancement of
incentive salience could make other people, events or actions in the world all seem more attractive, and
be powerfully enabling of engagement with them, which might well carry an aura of euphoria even if
not truly hedonic. Viewed this way, subjective reward experience may be partly synthesized from
motivation and cognitive appraisal components, similar to many other emotions (Barrett et al., 2007).
This mistaken appraisal explanation may also apply to cases of electrode self-stimulation described
below.

A neural explanation for why cocaine is pleasant may be that cocaine and amphetamine also stimulate
secondary recruitment of endogenous opioid and related neurobiological hedonic mechanisms, beyond
directly raising dopamine release. Those recruited secondary mechanisms may more directly cause
‘liking’ reactions and subjective pleasure. For instance, dopamine-stimulating drugs recruit elevation in
nucleus accumbens of endogenous opioid and GABA signals (Colasanti et al., 2012; Soderman and
Unterwald, 2009; Tritsch et al., 2012). Elevated endogenous opioid release in a site such as the NAc
hedonic hotspot could amplify ‘liking’ as described above, resulting in a more genuinely pleasurable
experience. Similarly, GABA signals in the far rostral strip of NAc shell can also enhance true ‘liking’
(Faure et al., 2010), which could occur if drugs of abuse that stimulate dopamine neurons also
stimulate some of those neurons to co-release more GABA in NAc (Tritsch et al., 2012).

However, hedonic effects might well change over time. As a drug was taken repeatedly, mesolimbic
dopaminergic sensitization could consequently occur in susceptible individuals to amplify ‘wanting’
(Leyton and Vezina, 2013; Lodge and Grace, 2011; Wolf and Ferrario, 2010), even if opioid hedonic
mechanisms underwent down-regulation due to continual drug stimulation, producing ‘liking’
tolerance. Incentive-sensitization would produce addiction, by selectively magnifying cue-triggered
‘wanting’ to take the drug again, and so powerfully cause motivation even if the drug became less
pleasant (Robinson and Berridge, 1993).

A major alternative hypothesis is that dopamine acts as a teaching
signal via prediction error or temporal difference computations to cause learning about rewards
(Schultz et al., 1997). In practice, it is often difficult to distinguish mesolimbic coding of reward
learning from incentive motivation, because most studies rely purely on incremental learning to alter
the motivation status of stimuli: learned predictive value and incentive value thus tend to co-vary
together. Further, a potential experimental confound present in many dopamine tracking experiments is
that physiological state control of motivation is often clamped into a narrow constant range during all
phases of the study (e.g., monkeys kept always mildly thirsty in electrophysiological studies; people
tested always in mild satiety). Clamping a constant state forces associative prediction to be the sole
determinant of a cue’s motivational value. That’s because it excludes any dynamic modulation of
incentive salience by shifts in physiological states, which often occurs in real life, and which would
permit experimental separation of learned versus motivation values (Berridge, 2012; Dayan and
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Berridge, 2014; Robinson and Berridge, 2013). The confound puts a ‘thumb on the scale’, in the sense
that any brain activity tracking cue motivational value would appear instead to track pure reward
learning. By contrast, studies that allow relevant physiological states to fluctuate often do find
consequent fluctuations in the motivational value of cues and in dopamine-related activity (Cone et al.,
2014; Medic et al., 2014; Robinson and Berridge, 2013; Smith et al., 2011). Future studies that
incorporate fluctuation might better be able to assess if mesolimbic dopamine systems track
motivational value more faithfully than learned prediction values.

Additional difficulties for the dopamine learning hypothesis comes from evidence questioning whether
dopamine is actually needed for any particular type of reward learning, and conversely evidence that
stimulation of dopamine does not reliably act as a causal teaching signal to establish new memories
(Berridge and Robinson, 1998; Eisenegger et al., 2014; Flagel et al., 2011; Robinson et al., 2005;
Saunders and Robinson, 2012; Shiner et al., 2012; Smittenaar et al., 2012). These issues have been
discussed elsewhere, and no doubt will be discussed further in future, perhaps eventually producing
clearer consensus on dopamine in reward learning (Berridge, 2012; Berridge and O'Doherty, 2014;
Collins and Frank, 2014; Schultz, 2013).

‘Pleasure electrodes’ –not-quite-pleasure generators?

The search for pleasure mechanisms in the brain arguably began with the 1950s discovery by James
Olds and Peter Milner of what Olds soon labeled ‘pleasure centers in the brain’ (Olds, 1956; Olds and
Milner, 1954). Those were electrode sites that rats would work to activate or self-stimulate. Self-
stimulation sites typically were in the lateral hypothalamus (LH) or other points along the mesolimbic
path, where electrodes can elicit surges in NAc dopamine release (among other mechanisms) (Gallistel,
2006; Hernandez et al., 2008). Brain-stimulation reward was so potent a phenomenon that “a hungry
rat often ignored available food in favor of the pleasure of stimulating itself electrically” (pp. 115–116)
(Olds, 1956).

However, Olds himself later revisited the question of whether actual pleasure was produced in the final
publication of his career. Posing the question “Was there any indication of a common denominator such
as the term pleasure implies?” Olds wrote in reply, “In any event the question of whether there is some
common denominator of positive reinforcement... is unanswered. It deserves further study." (p. 30)
(Olds, 1977). His final conclusion therefore appeared to leave open the entire issue of whether true
pleasure or ‘liking’ was generated by self-stimulation electrodes.

We have been drawn to re-examine the literature on pleasure electrodes, and to question whether most
electrodes actually produced pleasure. Our prompt began in the 1990s with what was then a surprising
finding, namely that rewarding LH electrode stimulation tended selectively amplify ‘wanting’ to pursue
and consume a sensory reward without actually enhancing ‘liking’ or the hedonic impact of the same
reward. This finding arose from an investigation by one of us with Elliot Valenstein on the motivation
versus hedonic properties of LH electrodes (Berridge and Valenstein, 1991). One explanatory
hypothesis at the time for why LH electrodes were not only self-stimulated, but also evoked intense
spontaneous motivation directed at a natural reward, such as eating food, was that the stimulation
essentially made the food or other reward more pleasant (Hoebel, 1988). However, contrary to that
tastier food hypothesis, Berridge and Valenstein found that LH stimulation failed to enhance ‘liking’
reactions to sweetness, even though it made the rats ‘want’ to eat at least four times more than normal
amounts (Berridge and Valenstein, 1991). Oppositely, if anything the LH electrode made sweet tastes
more disgusting during stimulation, rather than making the tastes more ‘liked’ (e.g., evoked gapes or
headshakes typical of bitterness while tasting pure sucrose).
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Still, of course, the electrodes might themselves have generated an internal pleasure state, regardless of
any lack of effects on external hedonic stimuli. That after all was the original essence of ‘pleasure
electrode’ claims. To gain a better answer to whether ‘pleasure electrodes’ lived up to their name, we
have reexamined the literature on human patients implanted with deep brain electrodes for self-
stimulation. The first were patients implanted in the 1950s–1960s, who received electrode implants
while institutionalized for depression, schizophrenia or other psychiatric conditions. For example, the
psychiatrist Robert Heath reported patients who would voraciously self-stimulate their electrodes,
activating deep forebrain sites within a ‘septal area’ that contained septum, anterior hypothalamus,
nucleus accumbens, ventral pallidum, ventromedial neostriatum, pyriform cortex and ventromedial
neocortex (Figure 5)(Heath, 1972; Heath, 1996). Heath’s patients were often given a self-stimulation
box with an activating button, with which they could control their own electrode stimulations.
Typically, they self-stimulated their electrodes avidly, resulting in ‘pleasure electrode’ claims (albeit the
claim was usually in form of third-person descriptions by experimenters, not quoted pleasure
declarations by patients themselves). One of Heath’s most dramatic ‘pleasure electrode’ cases was
known as B-19: a young man implanted with stimulation electrodes in septum/accumbens region for
depression and suicidal thoughts, drug abuse, and for the purpose of changing his sexual orientation (a
goal now recognized as unethical; electrode site depicted in Figure 5) (Heath, 1972). Heath reported B-
19’s electrode to cause "feelings of pleasure, alertness, and warmth (goodwill); he had feelings of
sexual arousal and described a compulsion to masturbate"(Heath, 1972) (p. 6). Yet on closer
examination, despite Heath’s assertions, it is not so clear that B-19's electrode ever really caused strong
feelings of pleasure. B-19 was never actually quoted as saying the stimulation felt pleasurable per se.
Nor was he said to show behavioral signs of pleasure or to exclaim anything like "Oh -- that feels
nice!" when his electrode was stimulated. The electrode stimulation certainly never served as a
substitute for sex. What it did instead was to make him want to engage more in sex -- just as it made
him want the stimulation more, and to press the button so avidly.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425246/figure/F5/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425246/figure/F5/
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Modern Deep Brain Stimulation

Figure 5
False pleasure electrodes?

Reconstruction of sites for original self-stimulation electrode locations in rat of Olds & Milner (1954) (left)
and of Heath (1972) in patient B-10. For both rat and humans, electrode sites would now be recognized to be
located in or near the nucleus accumbens. Thick line shows electrode shaft, and red dots show stimulation
points. In human brain, representation of ventral pallidum has been moved forward into the coronal plane of
the electrode to show relative positions of NAc and VP. Modified from Smith et al. 2010.

Deep brain stimulation has resurged in the new millennium as a
therapeutic technique for disorders ranging from chronic pain to depression, obsessive-compulsive
disorder, and Parkinson's disease (Boccard et al., 2014a; Holtzheimer and Mayberg, 2010; Kringelbach
et al., 2011; van Hartevelt et al., 2014). Contemporary target sites for deep brain electrodes often
include the nucleus accumbens and the subthalamic nucleus, the subgenual cingulate cortex, and fibers
descending from prefrontal cortex through the internal capsule. A woman with a deep brain electrode in
the subthalamic nucleus was reported, upon initial activation of her electrode, to act "in love with two
neurologists, and tried to embrace and kiss people" (Herzog et al., 2003). Subsequently she became
motivationally focused on intense shopping, to the point of engaging in binges of "unrestrained buying
of clothes". However, rather than this being a purely happy exhilaration, the continued subthalamic

https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&p=PMC3&id=4425246_nihms664561f5.jpg
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4425246/figure/F5/
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Incentive salience as sham reward

stimulation increasingly made her more suspicious, tense and hostile. She developed a "delusion that
her sons were conspiring against her, and she said that they tried to get her money by threat of force"
(all p.1383)(Herzog et al., 2003).

At sites in the nucleus accumbens, deep brain stimulation has been reported to produce sudden feelings
of desire to engage in a particular activity, such as visiting a nearby landmark or taking up again an old
hobby (Schlaepfer et al., 2008). But those human NAc electrodes explicitly failed to produce feelings
of pleasure: “There were no ‘liking’ effects during stimulation, in contrast to findings reported by
Heath” (p. 372) (Schlaepfer et al., 2008). Indeed, the patients were usually unable to tell even whether
their NAc electrode was on or off. In one case, when the electrode was stimulated the patient “was
unable to identify any changes, but spontaneously reported that he realized that he was in Cologne (in
Germany), that he never visited the famous Cologne Cathedral, and he planned on doing this in the
immediate future, which he indeed did the day following the operation.” Similarly, upon NAc electrode
activation in a woman, the patient “did not report any acute changes in depressive symptomatology but
spontaneously mentioned that she wished to take up bowling again (a favorite pastime of hers 12 years
ago, before onset of her depression)” (Schlaepfer et al., 2008). Whether these activities actually would
be made more pleasurable by NAc stimulation remains unknown.

Beyond evoking intense ‘wanting’, do any ‘pleasure electrodes’ actually produce true ‘liking’ too? We
remain open on this question, and acknowledge that a lack of evidence in cases above does not mean
that no electrode ever causes pleasure. It is just that most published cases appear to not be very pleasant
in our view. It would be valuable to have more studies of contemporary deep brain stimulation effects
on human pleasure.

Finally, we do not doubt that some electrodes may at least reduce negative affect, producing escape
from distress or pain (Mayer et al., 1971). One of us (MLK) has witnessed dramatic relief in chronic
pain patients when deep brain stimulation is turned on in targets such as the periaqueductal gray and
anterior cingulate cortex (Kringelbach et al., 2009). Similarly, relief from anxiety or depression may be
produced by some deep brain stimulations of NAc or prefrontal cortex, resulting in positive
engagement in social or leisure activities (Bewernick et al., 2010; Kennedy et al., 2011). Thus it may
well be that part of the mood-enhancing effects of much brain stimulation comes from alleviation of
unpleasant affective states (Boccard et al., 2014b; Holtzheimer and Mayberg, 2010; Kringelbach et al.,
2011).

As mentioned at start, reward normally contains ‘liking’, ‘wanting’
and learning components. Deep brain stimulation and neuropharmacological dopamine activations
seem to dissociate this natural constellation, engaging only one or two of the three components. We
suggest both rather specifically activate the incentive salience or ‘wanting’ component, which interacts
normally with associative learning, to produce intense motivation and focus it on a target, but without
activating the pleasure or ‘liking’ component of reward. To the external observer, and perhaps even
sometimes to the experiencing person, ‘wanting’ may be appraised as a positive reward involving eager
anticipation. Such a person is likely to be confused by the unfamiliar decoupling among reward
components, and may fail to recognize what is happening. But dissociated ‘wanting’ is merely a
counterfeit pleasure or sham reward, which lacks a true ‘liking’ component. This hypothesis could be
probed by more sophisticated studies of pleasure during brain stimulation.

If the interpretation is correct, it is worth noting that the hedonic valence of dissociated ‘wanting’ can
easily flip from positive incentive into a negative valence of anxiety, frustration or fear. Reversing the
hedonic valence of the experience would not necessarily disrupt its motivating power. The idea that
incentive motivation can be distressing is not new. After all, the word ‘tantalize’ comes from the
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ancient story of the torture of Tantalus, mythical son of the Greek god Zeus, condemned for his faults
to be eternally tempted by delicious food and drink held just out of reach while remaining hungry and
thirsty: painfully tantalized.

In other words, mesolimbic motivation can be plastic in hedonic valence. Motivational salience is
never neutral, but its valence is not fixed. Incentive salience makes the stimulus or representation it is
attributed to powerfully ‘wanted’ as well as attention-grabbing. Fearful salience makes the percept
equally attention-grabbing yet perceived as potential threat. Yet the hedonic valence of the entire
experience can be ambiguous. Incentive salience can occur either as eager anticipation, or as negative
frustration as in Tantalus. In other situations, the overall hedonic experience of fearful salience might
flip to positive, as in roller coasters or horror movies. Finally, the valence of mesolimbic motivational
salience itself can be plastic, as in NAc rats that switched between ‘wanting’ and ‘fear’, the
subthalamic-electrode woman who switched from manic shopping to suspicion, or addicts who switch
from euphoric craving to the paranoia of cocaine-induced psychosis.

Conclusion: Building a fruitful affective neuroscience of pleasure

Our approach to the affective neuroscience of pleasure has combined perspectives from human and
animal studies, aiming to recognize both subjective feelings and objective hedonic reactions, and to
give a more accurate mapping between brain circuitry and affective processes. We began by offering to
test our approach’s scientific validity against the criterion of whether it produces useful new insights.
We believe such new insights are emerging, as described above. To summarize: the emerging
realization that many diverse pleasures share overlapping brain substrates; better neuroimaging maps
for encoding human pleasure in orbitofrontal cortex; identification of hotspots and separable brain
mechanisms for generating ‘liking’ and ‘wanting’ for the same reward; identification of larger keyboard
patterns of generators for desire and dread within NAc, with multiple modes of function; and the
realization that dopamine and most ‘pleasure electrode’ candidates for brain hedonic generators
probably did not cause much pleasure after all.

Time will further assess the validity of these new conclusions, and if confirmed, we think they may aid
in better understanding of both normal pleasures and affective psychopathologies. Eventually the goal
is to contribute to more effective and safer treatments for affective disorders, as well as understanding
of affective wellbeing. Finally, evidence gained may inspire future affective neuroscientists to further
refine the search for the neural underpinnings of pleasure, which remains an important motivating
factor for many people and without which life too often becomes meaningless.
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